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Abstract. Lattice animals with fugacities conjugate to the number of indepedent cycles, or to the
number of nearest neighbour contacts, go through a collapse transition at aθ -point at a critical value
of the fugacity. We examine the phase diagram of a model which includes both a cycle and a contact
fugacity with Monte Carlo methods. Using an underlying cut-and-paste Metropolis algorithm for
lattice animals, we implement in the first instance a multiple Markov chain simulation of collapsing
animals to estimate the location of the collapse transitions and the values of the crossover exponents
associated with these. Secondly, we use umbrella sampling to sample animals over a rectangle in
the phase diagram to examine the structure of the phase diagram of these animals.

1. Introduction

Theθ -transition in models of linear and branched polymers has received considerable attention
over a period which spans several decades (Mazur and McCrackin 1968, Mazur and McIntyre
1975, Sunet al1980, Sun 1990, Parket al1992, Tesiet al1996, Madras and Janse van Rensburg
1997). This transition is also called thecollapse transitionand it occurs when the polymer
collapses from an expanded conformation in a good solvent to a compact conformation in a
solvent of poor quality. Between these phases, there is an intermediate regime which exists
only at the critical point (orθ -point). This regime is characterized by properties distinct from
those of either the expanded or collapsed phases. The collapse of the polymer is usually best
characterized by a change in its metric properties. The mean linear dimension of the branched
polymer (as a function of its total mass,M) is expected to scale asMν in the expanded
phase, whereν is themetric exponent(in two dimensionsν ≈ 0.64, see for example Janse
van Rensburg and Madras (1997)). In the collapsed phase this scaling becomesM1/d in d
dimensions. However, theoretical and numerical studies strongly suggest the existence of
an intermediate metric scaling regime characterized by the metric exponentνt < ν at the
θ -point in a variety of different models (see, for example, De Gennes 1975, 1978, Derrida
and Herrmann 1983, Dickman and Schieve 1984, 1986, Duplantier 1986, 1987, Saleur 1986,
Coniglio et al 1987, Duplantier and Saleur 1987, Lam 1987, 1988, Chang and Shapir 1988,
Gaunt and Flesia 1990, 1991, Flesia and Gaunt 1992, Madras and Janse van Rensburg 1997).

The phase diagram of collapsing lattice animals has also been studied. There are a number
of (different) versions of this model. This is best explained by noting that a lattice animal is
characterized by itsorder (the number of vertices), itssize(the number of edges), itscyclomatic
index(the number of cycles), the number ofcontacts(these are pairs of vertices in the animal
which are adjacent in the lattice, but not in the animal), and the number ofsolvent contacts
(the number of lattice edges with one endpoint in the animal). The metric collapse of animals
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Figure 1. The phase diagram of lattice animals with
a contact and a cycle fugacity. Critical percolation is
marked with a•, and is on the intersection of a line ofθ -
transitions and a line along which animals are weighted
as percolation clusters. The critical percolation point is
a multicritical point which separates the critical line of
θ -transitions into a line of tricritical collapse to a phase
rich in contacts, and into a line of tricritical collapse
into a phase rich in cycles.

in a particular model can be achieved by weighting the animals with respect either to the
number of contacts (this is thek-model), or the cyclomatic index (this is thec-model, Derrida
and Herrmann (1983)), or to the number of solvent contacts (this is thes-model, Flesiaet al
(1992a, b)). In each of these models the weighting is achieved by the introduction of a fugacity
conjugate to the number of contacts, or conjugate to the number of cycles, and the collapse
transition should occur at a critical value of the fugacity. The situation can be made even
more interesting by the introduction of more than one fugacity (Flesiaet al 1992a, b). In this
paper we will consider theck-model, where animals are counted with respect to their size and
weighted with respect to the cyclomatic index and number of contacts. This model was studied
in Janse van Rensburg and Madras (1997), where a cut-and-paste algorithm was developed
and tested by calculating critical exponents associated with this model. The phase diagram of
animals in this ensemble was also discussed, and is reproduced in figure 1. A curve of tricritical
θ -points separates a phase of expanded animals (which includes the ensemble of uniformly
weighted animals) from a phase of collapsed animals. This curve ofθ -points contains the
critical percolation point (where animals are weighted as percolation clusters), which divides
it into two classes of collapse. In the first class there is a line ofθ -points which is the result of a
collapse due to an increasing contact fugacity, and the animals collapse to a phase of ‘spanning
tree’ clusters. The second class is a curve ofθ -points which is due to an increase in the cycle
fugacity, and this collapse should be to a phase rich in cycles (‘section graph’ clusters). On the
critical curve we find animals which are either critical with respect to collapse to spanning trees
(calledθ -animals), or critical with respect to collapse to section graphs (calledθ ′-animals).
The possibility of a collapse–collapse transition between the collapse regime of ‘section graph’
clusters and ‘spanning tree’ clusters has been investigated in several studies. Although some
evidence which supports the notion of such a transition was found by Flesiaet al (1992a, b),
Peard (1995), there is also no evidence for it in calculations based on the renormalization group
and in a model of directed animals (Henkel and Seno 1996).

In this paper we investigate the phase diagram of collapsing animals as illustrated in
figure 1. In particular, we consider an ensemble of animals of fixed sizen on a square lattice,
and we introduce fugacities conjugate to the number of cycles, and to the number of nearest
neighbour contacts. In section 2 we discuss the phase diagram of this model, and various scaling
hypotheses and their consequences are examined. We simulate animals in this ensemble by
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using two separate and different Monte Carlo techniques (Metropoliset al 1953, Hammersley
and Handscomb 1964). In the first place we use a multiple Markov chain implementation (see
Geyer and Thompson 1994, Tesiet al 1996) of the algorithm discussed in Janse van Rensburg
and Madras (1997) to study separately the collapse of animals with a contact fugacity and with
a cycle fugacity. Secondly, we use umbrella sampling (Torrie and Valleau 1977, Valleau 1991,
1993a) techniques to accumulate data on a rectangle in the phase diagram which covers the
expanded and the collapsed phases, as well as the curve of tricriticalθ -points and the critical
percolation point.

2. Collapsing animals

In this section we briefly review the hypothetical phase diagram and scaling in theck-model
of interacting animals. The partition function and free energy are first examined in section 2.1,
and the phase diagram is discussed. Finite-size scaling and the scaling exponents are discussed
in section 2.2.

2.1. The phase diagram

Let an(c, k) be the number of lattice animals ofn edges,c cycles andk nearest neighbour
contacts. The partition function of this model is given by

Zn(βc, βk) =
∑
c,k

an(c, k)e
βcceβkk (2.1)

whereβc is thecycle fugacity, andβk is thecontact fugacity. The limiting free energy of this
model is known to exist (Janse van Rensburg and Madras, 1997):

F(βc, βk) = lim
n→∞

1

n
logZn(βc, βk) (2.2)

andF(βc, βk) is convex in both its arguments and is continuous, and differentiable almost
everywhere.

In a lattice animal withn edges,c cycles andk contacts,s solvent contacts andv vertices
it can be checked that

1= v − n + c

2dv = 2n + 2k + s
(2.3)

whered is the dimension of the lattice. We define the perimeterP of the animal as the number
of nearest neighbour contacts and solvent contacts:

P = s + k. (2.4)

It is possible to weight the animals in equation (2.1) such that it becomes a model of
percolation clusters at a given probabilityp that an edge is open. In particular, the probability
Pn(p) that the cluster at the origin has sizen edges is

Pn(p) =
∑
c,k

an(c, k)vp
n(1− p)s+k (2.5)

with {n, v, c, s, k} related to each other as in equations (2.3) and (2.4). Eliminatingv ands in
equation (2.5) gives

Pn(p) = pn(1− p)2d+2(d−1)n
∑
c,k

(n + 1− c)an(c, k)(1− p)−2dc−k (2.6)

which is a weighted sum of the partition function in equation (2.1) and its derivatives, if

βc = −2d log(1− p) dβk = − log(1− p). (2.7)
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Thus, if the fugacities are related top as in equation (2.7), then the model corresponds to
percolation model at a probabilityp. In two dimensions the critical percolation probability is
pc = 1

2, and we have critical percolation clusters at(β∗c , β
∗
k ) = (log 16, log 2). It is known that

P∞(p) (the percolation probability) is non-analytic atp = pc (Grimmett 1989), and so the
point(log 16, log 2) is also a non-analytic point ofF(βc, βk). The rest of the phase diagram is
expected to have the appearance proposed in figure 1. The percolation line intersects a curve
of tricritical θ -transitions, presumably at the percolation point (sinceP∞(p) is expected to be
non-analytic only at this point). The percolation point divides the curve ofθ -points into two
critical curves of collapse transitions, each characterized by their own tricritical exponents. If
βc is fixed at a small or negative value, then presumably the collapse is into a phase poor in
cycles and rich in nearest neighbour contacts. The tricritical exponents of this transition are
expected to be those of a model of collapsing lattice trees, which is located atβc = −∞ in
figure 1. We expect the collapsed animals to have the appearance of spanning trees in this
collapsed regime, and we will refer to it as thecontact phase. This transition is indicated by the
line labelled byθ in figure 1. Numerical evidence suggest that this line of transitions may be a
straight line. In particular, the location of the percolation point atβ∗k = log 2, and the critical
value of the nearest neighbour fugacity in lattice trees (estimated to beβtk ≈ 0.699± 0.052;
see Janse van Rensburg and Madras (1996), Madras and Janse van Rensburg (1997)) strongly
support this possibility. Similarly, if the contact fugacityβk is kept small or negative, then the
collapse is into a phase rich in cycles, this is thecycle phase. In this case, the transition should
be related to the collapse of strongly embedded animals with a solvent or cycle fugacity (see
Derrida and Hermann 1983)†. We indicate this collapse transition in figure 1 by theθ ′-curve.

Another interesting issue presented by figure 1 is the following: are the line ofθ -transition
and the curve ofθ ′-transitions in the same universality class? Data collected in various studies
(see Janse van Rensburg and Madras (1996), and Madras and Janse van Rensburg (1997) for
details) suggest two different values of the crossover exponent along these lines. In this paper
we aim to consider the points raised above. In particular, we are interested in the locations of
the transitions, and in the values of the tricritical exponents associated with these.

2.2. Scaling

Specific heat. The finite-size free energy is defined byFn(βc, βk) = 1
n

logZn(βc, βk).
The usual finite-size scaling assumptions made for the free energy introduces the crossover
exponentsφc andφk, where we assume thatφc describes the crossover to critical behaviour
along theθ ′ curve with increasingn, andφk describes the crossover to critical behaviour along
the θ -line. Therefore, if we are not close to the percolation point, where effects from both
these lines may interfere to give a more complicated picture, we should expect that

Fn(βc, βk) ∼
{
f̂ (nφkκ)/n for contact collapse (θ -line)
ĝ(nφcχ)/n for cycle collapse (θ ′-line).

(2.8)

Here,κ andχ are scaling fields defined byκ = (β∗k − βk) andχ = (β∗c − βc). The scaling
functionsf̂ andĝ are assumed to approach constants if their arguments approach zero. The
specific heatsof the collapse transitions will be the most accessible quantity from a numerical
point of view: these are the second derivatives of the free energy. Taking derivatives twice
with respect toκ and toχ in equation (2.8) gives

Ckkn ∼ n2φk−1f̂ ′′(nφkκ) (2.9)

Cccn ∼ n2φc−1ĝ′′(nφcχ). (2.10)

† Note that the model in this paper is different from that in the work by Derrida and Hermann (1983) where a model
of strongly embedded lattice animals was considered.
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Theκ- andχ -dependence of these can be accentuated by the following manipulation of the
right-hand sides of equations (2.9) and (2.10):

Ckkn ∼ n2φk−1f̂ ′′(nφkκ) ∼ κ1/φk−2(nφkκ)2−1/φk f̂ ′′(nφkκ) ∼ κ1/φk−2f̂0(n
φkκ) (2.11)

with f̂0(x) defined in the obvious way, and a similar result is found forCccn . The usual
assumption that the singularity in the free energy is described byκ2−αk , or byχ2−αc , whereαk
andαc are thespecific heatexponents along the critical lines, then implies the hyperscaling
relations:

2− αk = 1

φk
(2.12)

2− αc = 1

φc
. (2.13)

It is also possible to compute the Gaussian curvature of the free energy instead. Let

Ckcn =
∂2

∂κ∂χ
Fn(βc, βk) (2.14)

then the Gaussian curvature is the Hessian ofFn(βc, βk):

Cgn = Ckkn Cccn − Ckcn Cckn . (2.15)

Using equations (2.9) and (2.10), we conclude that

Cgn ∼ n2(φc+φk)−2 (2.16)

close to the percolation point.

Metric scaling. In addition to the thermodynamic properties of animals as described above
in terms of the specific heats, we shall also be interested in the metric behaviour of animals
in the phase diagram in figure 1. Let〈R2〉n be the mean square radius of gyration. Then we
expect

〈R2〉n ∼


n2ν in the expanded phase
n2νθ along theθ -line
n2νθ ′ along theθ ′-line
n2νp at the critical percolation point.

(2.17)

Available data (see for example, Derrida and Herrmann 1983, Janse van Rensburg and Madras
1996, Madras and Janse van Rensburg 1997) suggest thatνθ = νθ ′ along the critical curve, and
that the value of the metric exponent at the percolation point (Stauffer 1979) is also equal to
νθ . A more complete scaling assumption for the mean square radius of gyration will include
a confluent correction, which is expressed by introducing a confluent exponent1:

〈R2〉n = An2ν(1 +Bn−1). (2.18)

This scaling assumption is useful if we consider amplitude ratios involving〈R2〉n. In particular,
the ratio

〈R2〉2n
〈R2〉n ≈ 22ν(1 +Cn−1) (2.19)

should approach 22ν in the expanded phase asn → ∞. In the collapsed phase, a similar
analysis suggests that the amplitude ratio should approach 22/d ; while ν gets replaced by the
νθ , νθ ′ andνp (whichever is appropriate) along the critical curve.
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The mean perimeter.The mean perimeter of percolation clusters has received much attention
in the literature (see for example, Stauffer 1979). If we define the partition function
Zpn (p) =

∑
c,k an(c, k)p

nqs+k for percolation, whereq = 1 − p andP = s + k is the
perimeter, then the expected value ofP is given by

〈P 〉p = q

p
n + q

d

dq
logZpn (p). (2.20)

If we now assume the usual scaling for the partition function, logZpn (p) ∼ ĥ(nσ (pc − p)),
whereσ is the crossover exponent, then

〈P 〉p ≈ q

p
n +Bnσ (2.21)

a relation that was tested numerically in Janse van Rensburg and Madras (1997). It is not
evident that a similar relation applies along the line ofθ -transition, and that the exponentσ is
an exponent of tricriticalθ -animals. We will present some data thatσ can be seen away from
the critical percolation point at theθ -points of collapse (see figure 7).

The mean branch size.We define the mean branch size of animals as follows (see Janse van
Rensburg and Madras 1992, and Madras and Janse van Rensburg 1997). Lete be a cut-edge
of an animalA. ThenA− e is disconnected, and the smaller of its two components is called
a branch; let the size of the branch bebn. The expected value ofbn is defined by taking the
uniform average over all possible cut-edges in all animals. Let the exponentε describe the
scaling of〈bn〉:

〈bn〉 ∼ nε (2.22)

whereε 6 1. In the implementation of a cut-and-paste algorithm for animals it is more
convenient to compute a related quantity. The algorithm selects an edge uniformly over all
edges in the animal. If a cut-edge is not chosen, then we define the branch to have size zero.
If a cut-edge is selected with probabilitypn, then the observed size of a branch will be

〈Bn〉 ∼ pn〈bn〉 + (1− pn).0∼ pnnε. (2.23)

We do not expectpn to approach zero with increasingn in either the expanded phase or along
the critical curve. In the collapsed phase the situation is less clear, but in a spanning tree
regime we also expectpn not to approach zero with increasingn. However, in the section
graph regime, which results from collapse along theθ ′-curve, we would presumably have
compact animals rich in cycles, andpn may approach zero.

3. Numerical results

We simulated lattice animals using the cut-and-paste algorithm for animals (Janse van Rensburg
and Madras 1997). This algorithm was implemented with two techniques. In the first place, we
used multiple Markov chain sampling to simulate animals (in the square lattice) along the axes
of the phase diagram in figure 1. Secondly, we implemented the algorithm with an umbrella
distribution over a rectangle [0, 2 log 2]× [0, 6 log 2] in the phase diagram which includes the
critical curve in the first quadrant of figure 1.

3.1. Multiple Markov chain sampling

In this simulation we sampled along a set of parallel Markov chains in the state space of
animals using a multiple Markov chain algorithm as explained in Tesiet al (1996). In the
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Figure 2. The specific heat as a function of the cycle fugacity, estimated using a
multiple Markov chain Monte Carlo simulation. The data atn = 50 are indicated
by squares, and the peaks systematically increase in height withn increasing in
{50, 100, 200, 400, 800, 1200, 1600, 2400, 3200}.

first set of simulations, 20 parallel chains were placed along theβc = 0 axis betweenβk = 0
andβk = 2 log 2 to simulate animals undergoing a contact collapse at a critical value of the
contact fugacityβ∗k . In the second set of simulations, we placed 20 chains along theβk = 0
axis betweenβc = 0 andβc = 6 log 2 to simulate animals undergoing a cycle collapse at the
critical valueβ∗c of the cycle fugacity. Our prime motive is the calculation of the crossover
exponentsφc andφk associated with the collapse transitions, as well as the location of the
critical valuesβ∗k andβ∗c . In addition, we hope to obtain estimates of the metric exponentsνθ
andνθ ′ at the critical points. Animals of sizes ranging fromn = 50 ton = 3200 were sampled.
The data for animals along the cycle axis are in figure 2.

The height and position of the peaks in the specific heat were estimated by interpolating
the data collected from each chain. From equations (2.9) and (2.10) we conclude that the
height in the peaks increases withn as

Hk(n) ∼ n2φk−1 Hc(n) ∼ n2φc−1 (3.1)

while the position of the peak should move withn as

βk(n) ∼ β∗k + O(n−φk ) βc(n) ∼ β∗c + O(n−φc ). (3.2)

We analysed our data using a least squares analysis†. Our results are

φk = 0.6027± 0.0044± 0.0071

φc = 0.6274± 0.0110± 0.0010.
(3.3)

The position of the collapse transition is extrapolated by using the values ofφk andφc in
equation (3.3), together with equation (3.2) to estimateβk andβc. The fits were repeated with

† A fit is deemed acceptable if theχ2-statistic is acceptable at the 95% level. If a fit is not acceptable, then data at the
smallest value ofn (where corrections to scaling contribute the most) are discarded. We also estimate a systematic
error by keeping track of our best estimate in a successful fit by discarding one more data point at the lowest value
of n. The absolute difference in the results is taken as the systematic error. The statistical error will always be stated
before the systematic error.
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φk andφc taking values at the ends of their respective confidence intervals to estimate the effect
of the uncertainty in these exponents on the location of the transition. Our best estimates are

β∗k = 0.719± 0.076

β∗c = 3.61± 0.11
(3.4)

where the estimated systematic errors are much smaller than the stated 95% statistical
confidence intervals. The estimated value forβ∗k compares well to the estimate 0.737± 0.015
obtained by exact enumeration (Peard 1995).

The mean square radius of gyration of the animals was also examined. The multiple
Markov chain simulations each had a chain at zero fugacity, and those data can be used to
obtain a high quality estimate of the metric exponent. If all the data are pooled, then a least
squares analysis gives

ν = 0.644 19± 0.000 64± 0.000 31. (3.5)

This result compares well with the estimates ofν for lattice trees and animals in the literature;
it is more precise than the previous best Monte Carlo estimate (Janse van Rensburg and Madras
1992), and compares well with results obtained by other methods (Derrida and de Seze (1982)
foundν = 0.6408± 0.0003 while Kert̀esz (1986) estimatedν = 0.6406± 0.0002). We do
not think that the difference of these estimates with our estimate is significant; there may still
be other biases present in our data, or in those studies, which could account for the difference.
The metric exponent at the contact collapse transition can be estimated by recording data at the
peak in the specific heats. At the peak corresponding to the contact collapse, our best estimate
is

νθ = 0.5191± 0.0071. (3.6)

On the other hand, we could not find a satisfactory two parameter fit to our data at the cycle
collapse transition. Our ‘best’ estimate suggests thatνθ ′ ≈ 0.52, which is consistent with the
result obtained in equation (3.6). At the percolation pointνp = 0.532± 0.005 (Janse van
Rensburg and Madras 1997), an estimate which is close to the estimate in equation (3.6). It
seems that the available evidence does not rule out the possibility thatν assumes the same
value all along the critical curve and at the percolation point in figure 1. If this is the case,
then the critical percolation cluster and aθ -animal, or aθ ′-animal, will have the same metric
properties.

3.2. Umbrella sampling

The multiple Markov chain Monte Carlo implementation above collects data at a set of discrete
values of the fugacities. There are several advantages in this approach, most notably the
shortened autocorrelation times along the Markov chain, and the simultaneous collection of
data at a number of different values of the fugacities. However, it would also be valuable to
collect data over a region of parameter space; say over a rectangle which covers an area of
interest in figure 1. This can be done using a variant of importance sampling called umbrella
sampling (Torrie and Valleau 1977, Valleau 1991, 1993a). That this approach is appropriate in
the model in this paper is suggested by the results obtained for collapsing lattice trees (Janse
van Rensburg and Madras 1996, Madras and Janse van Rensburg 1997). The main difference
in this work, compared to previous implementations, is that we aim to use umbrella sampling
over a rectangle (involving two fugacities) rather than just along a line (which involves only
one fugacity).

The implementation of the umbrella sampling scheme for animals proceeded as follows.
DefineAn to be the set of all animals withn edges, and letα be such an animal. Letc(α)
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be the number of cycles andk(α) be the number of contacts in the animalα. The Boltzmann
distributionPn over the animals inAn is given by

Pn(α) = eβcc(α)+βkk(α)

Zn(βc, βk)
(3.7)

whereZn(βc, βk) is a normalizing function, and in this case is also the partition function defined
in equation (2.1). In the usual implementation of the cut-and-paste Metropolis algorithm for
animals, one samples along a Markov chain inAn with limiting equilibrium distribution given
by the Boltzmann distribution in equation (3.7). In this implementation, the animalα is
weighted by the factor eβcc(α)+βkk(α). In the umbrella simulations we supposed that the animals
are each assigned a weightπ(α) = π(c(α), k(α)), and letZn(π) =

∑
α π(α). Then the

Metropolis algorithm will have equilibrium probability distributionπ(α)/Zn(π) over the set
An. Canonical averages can be computed using importance sampling techniques. Letf be a
function onAn, and define the following estimator over a chain of lengthm:

Sm(f ) = 1

m

m∑
i=1

f (Xi)

π(Xi)
eβcc(α)+βkk(α). (3.8)

The ratio estimator

Rm(f ) = Sm(f )

Sm(1)
(3.9)

is a biased estimate of〈f 〉βc,βk . An additional and important advantage is the ability
to estimate relative free energies. The ratio estimatorSm(1;β(2)c , β(2)k )/Sm(1;β(1)c , β(1)k )
converges toZn(β(2)c , β

(2)
k )/Zn(β

(1)
c , β

(1)
k ). By taking logarithms and dividing byn, we see

that 1
n

log(Sm(1;β(2)c , β(2)k )/Sm(1;β(1)c , β(1)k ))→ Fn(β
(2)
c , β

(2)
k )− Fn(β(1)c , β(1)k ).

Obtaining an umbrella for a particular implementation can be a problem. The following
method generally works, if it is used with patience. Assume that the umbrella distribution is
a combination of Boltzmann distributions

π(α) = π(c, k) =
∑
i,j

wi,je
β
(i)
c c(α)+β(j)k k(α) (3.10)

where the fugacitiesβ(i)c andβ(j)k form a grid over the rectangle of interest, and the Boltzmann
factors are weighted bywi,j at each grid-point. Notice the implicit assumption thatπ(α) is
only a function of the number of cycles and contacts. This is very convenient: we only need
to construct a table of values ofπ(c, k) in the implementation of the algorithm.

Since we wish to have an umbrella which will allow us to compute canonical averages
at any of the grid points (say at(β(i)c , β

(j)

k )), the contribution of that Boltzmann factor
corresponding to this grid point should make a substantial contribution to (3.10). This is
true for eachi andj , which leads us to the following recipe:adjust the weightswi,j such that
each term in equation (3.10) makes a comparable contribution toπ(α). This means that

〈〈wi,jeβ
(i)
c c(α)+β

(j)

k k(α)/π(c(α), k(α))〉〉π ≈ 〈〈wk,leβ
(k)
c c(α)+β(l)k k(α)/π(c(α), k(α))〉〉π . (3.11)

In other words, we can solve for the ratios of the weights:
wi,j

wk,l
≈ en(Fn(β

(k)
c ,β

(l)
k )−Fn(β(i)c ,β(j)k )) (3.12)

where we usedFn(βc, βk) = [logZn(βc, βk)]/n. Thus, if we know the free energies, then
we can find a good umbrella. Unfortunately, this is a circular argument; in order to find good
estimates of the free energies, we need a good umbrella in the first place. All is not lost,
however, as we boot-strapped our simulations by starting at a small value ofn, and estimated
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Figure 3. The estimated specific heats and free energy, obtained from the umbrella Monte Carlo
simulation. Clockwise from the top left-hand corner we haveCkkn , Cccn , F(βk, βc) andCgn .

the free energies over a 100× 100 grid covering the rectangle [0, 2 log 2]× [0, 6 log 2]. The
results were then used to estimate weights at a larger value ofn. If the resulting weights
did not give a good umbrella, then we repeated the run with new weights estimated from the
results of the previous run. This technique consistently gave a good umbrella after a few
iterations, at the expense of considerable computer time! Finally, the resulting time series
from a run with a good umbrella were analysed over a 70×70 grid which covers the rectangle
[0, 2 log 2]× [0, 6 log 2]. Animals of sizenwere sampled in these runs once everyn iterations,
and for animals of size up to 400 edges we sampled 106 times (the total run had length 106n

iterations). For animals of size 500 we sampled data 1.2× 106 times, and for animals of sizes
600 and 800 we sampled data 2×106 times. The total CPU time used ran into weeks for larger
values ofn.

3.2.1. Specific heats.We computedCkkn andCccn as in equations (2.9) and (2.10) by collecting
data on the number of cycles and contacts in the animals. In addition, the Gaussian curvature
of the free energy (equation (2.15)) was also computed. In figure 3 we illustrate these specific
heats for animal of sizen = 300 over the sampling area.

We estimated the height and the location of the peak in the specific heatCkkn along the
contact axis to estimate the exponentφk in equations (2.9) and (3.1). Linear least squares
analysis, using the same criteria as in section 3.1, gave the estimate

φk = 0.622± 0.009± 0.022 (3.13)

of the crossover exponent associated with contact collapse in animals. The critical value of the
contact fugacity can also be estimated, assuming that equation (3.2) applies here. We obtained

β∗k = 0.711± 0.11± 0.08. (3.14)

We similarly analysed the data computed from the specific heatCccn along the cycle axis to
estimate the crossover exponent associated with cycle collapse, and the critical value of the
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cycle fugacity at this collapse. We obtained

φc = 0.622± 0.006± 0.026 (3.15)

β∗c = 3.52± 0.032± 0.010. (3.16)

These results are consistent with the values obtained from the (independent) multiple Markov
chain Monte Carlo method, and stated in equations (3.3) and (3.4).

The height of the peak in the Gaussian curvature of the free energy was argued to increase
with n as in equation (2.16). From equation (2.15), and by using (2.9) and (2.10), it seems that
a reasonable scaling assumption for the peak inC

g
n is

Cgn(βc, βk) ∼ n2(φc+φk)−2ĥ(nφcκ, nφkχ) (3.17)

whereĥ is a universal scaling function. In other words, the location of the peak should scale
with n as

βc(n) = β∗c + O(n−φc )
βk(n) = β∗k + O(n−φk ).

(3.18)

In addition, we expect the limiting position of the peak to coincide with the percolation point
in figure 1. A least squares analysis gives

β∗k = 0.60± 0.30

β∗c = 3.54± 0.30.
(3.19)

The large error bars are rounded (up) statistical uncertainties. These results can be used to
compute the critical percolation probability as an additional check. Fromβk = 0.60 and
equation (2.7) we obtainpc ≈ 0.45 and fromβc = 3.54 we obtainpc ≈ 0.587, both estimates
with large error bars. A more successful approach is found if we plot the peaks in the Gaussian
curvature againstp. This givespc = 0.491±0.008, which is consistent with the known value
of pc. The exponent 2(φc + φk) − 2 in equation (3.17) can also be determined by analysing
the height of the Gaussian curvature of the free energy. We obtained

2(φc + φk)− 2= 0.4019± 0.17± 0.01. (3.20)

This result is consistent with the estimates ofφk andφc in equations (3.13) and (3.15).

3.2.2. The mean square radius of gyration.We collected data on the mean square radius of
gyration for uniformly weighted animals (these are at the origin in figure 1), and for animals
weighted asθ -animals (at the point(0, β∗k ) on the contact axis), and weighted asθ ′-animals
(at the point(β∗c , 0) on the cycle axis) and as critical percolation clusters. We estimated the
metric exponentν at each of these points:

ν = 0.6476± 0.0037± 0.0006

νθ = 0.5364± 0.0033± 0.0021

νθ ′ = 0.5546± 0.0039± 0.0009

νp = 0.5335± 0.0031± 0.0036.

(3.21)

The estimate ofν for expanded animals is consistent with other estimates in the literature
(Janse van Rensburg and Madras 1997). The value estimated forνp is also consistent with
the accepted value for critical percolation, which is approximately 0.53. The estimate for
θ -animals is consistent with this value, but we note that our result forθ ′-animals excludes both
the values of the metric exponent for critical percolation clusters andθ -animals with the stated
error bars. Most available data (see for example, Derrida and Hermann 1983, Madras and Janse
van Rensburg 1997, Janse van Rensburg and Madras 1997) suggest thatθ - andθ ′-animals have
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Figure 4. Amplitude ratios of the mean square radius of gyration againstβk .

Figure 5. Amplitude ratios of the mean square radius of gyration againstβc.

a metric exponent close in value to critical percolation clusters, and our data does not suggest
otherwise (it is still possible that there is an unknown systematic error in the estimates above,
which we cannot detect by our analysis; for more on this possibility, see You and Janse van
Rensburg (1998)).

Amplitude ratios of the mean square radius of gyration were also computed along the
contact, and cycle fugacity axes in figure 1. We illustrate those in figures 4 and 5. The
inflection points in the amplitude ratios may be taken as estimates of the collapse transitions.
If we extrapolate the inflections in figure 4, then we obtain the estimateβ∗k ≈ 0.71, which is
consistent with the estimates obtained from the specific heat data above in equation (3.14).
Similarly, we can extrapolate the inflections in figure 5 to obtain the estimateβ∗c ≈ 3.52, which
is also consistent with the result we obtained by considering the specific heat data. Finally,
the amplitude ratios can also be plotted againstp along the percolation line in figure 1. The
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Figure 6. Amplitude ratios of the mean square radius of gyration againstp along the percolation
line.

resulting curves are plotted in figure 6. The metric collapse in these ratios should coincide
with percolation in the clusters, and the inflection points in each curve should be estimating
the critical value ofp. An average over the inflection points gives 0.45± 0.02.

3.2.3. The mean perimeter.Data on the mean perimeter were also collected for expanded
animals at the origin in figure 1, as well as at the critical points on the contact axis, the cycle
axis, and at the critical percolation point. For expanded animals, the perimeter should grow as
n, and by assuming that〈Pn〉 = Anω, a least squares analysis of our data gives

ω = 0.9922± 0.0017± 0.0013. (3.22)

At the percolation point, the behaviour of〈Pn〉 should be given by equation (2.21). Since
pc = 1

2, we can estimate the percolation crossover exponentσ in (2.21). A linear least squares
analysis gives

σ = 0.3861± 0.0042± 0.0023. (3.23)

It is more difficult to estimate the dependence of the mean perimeter onn at theθ - andθ ′-
transitions along the axes in figure 1. Equation (2.21) suggests that〈Pn〉 ≈ An+Bnσ ; if it is true
that the exponentσ exists away from the critical percolation point. We tested this asssumption
in figure 7 by plotting〈Pn〉/n againstnσ−1. The resulting plots are linear, and confirms the
notion thatσ describes the surface contribution to the perimeter for critical animals along the
critical curve in figure 1.

The perimeter of an animal should change as it goes through a collapse transition to a
compact animal. The plots in figure 7 suggests that

〈Pn〉
n
≈ ψ(βc, βk) +Bnσ−1 (3.24)

whereψ is an amplitude. We investigated the functionψ along the contact and cycle axis
by plotting 〈Pn〉/n againstβk and againstβc in figures 8 and 9. The inflection point inψ
should again be an estimate of the critical points: we found thatβ∗k ≈ 0.73 andβ∗c ≈ 3.45 by
extrapolating the inflection points in figures 8 and 9. These results are not inconsistent with
our previous results.
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Figure 7. The density of perimeter edges in the animal plotted againstnσ−1. The data points
represented by◦ were obtained at(β∗k , 0); those represented by• were obtained at(0, β∗c ); and
those represented by4 were obtained at the critical percolation point.

Figure 8. Pn/n againstβk along the contact axis. We expect this to approach a limiting curve.
The value ofn increases systematically from top to bottom.

The ratioPn/n can also be computed along the percolation line and plotted as a function
of the percolation probabilityp. The inflection points in these curves should converge to the
critical value ofp with increasingn. Our results are shown in figure 10, and the average of the
inflection points estimates thatpc = 0.514± 0.018, in close agreement with the known value
of pc = 1

2.

3.2.4. The mean branch size.Data were similarly collected for the mean branch size for
expanded animals, and forθ - andθ ′-animals and for critical percolation clusters. The exponent



Collapsing animals 1581

Figure 9. Pn/n againstβc along the cycle axis. We expect this to approach a limiting curve. The
value ofn increases systematically from top to bottom.

Figure 10. Pn/n againstp along the percolation line. We expect this to approach a limiting curve.
The value ofn increases systematically from top to bottom.

ε was estimated in each case as

ε = 0.7447± 0.0100± 0.0013

εθ = 0.6665± 0.0110± 0.0056

εθ ′ = 0.031± 0.042± 0.017

εp = 0.427± 0.018± 0.013.

(3.25)

In this case we obtained different values for each regime. The estimate for expanded animals
coincide with the estimate in Janse van Rensburg and Madras (1997), as does the estimate
at the critical percolation point. The value estimated forθ -animals are different, suggesting
larger branches (on average) in the animals. The exponent has a very small estimated value for
θ ′-animals. These animals have a lot of cycles, and the result suggests that deleting a cut-edge
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in such an animal is likely to give a small branch. The opposite is true for percolation clusters,
where a larger value ofεp is found: if a cut-edge is deleted, then we can expect, with some
probability, a large branch (in other words, most cycles are small).

We have also made an attempt to estimate the exponentε in the collapsed phase. At the
pointβk = 1,βc = 0 (this is on the contact axis, well into the collapsed phase), a least squares
analysis gives

εk = 0.659± 0.011± 0.010. (3.26)

The fit was good withχ2 ≈ 2 on eight degrees of freedom atnmin = 50. Remarkably, the
value ofε obtained here is within the error bars ofεθ in equation (3.25). Thus, it seems that
there is no further change in the branching characteristics of the lattice trees if we move beyond
theθ -line into the collapsed phase. On the other hand, if we consider the data on the cycle axis
in the collapsed phase atβk = 0, βc = 4, then we are unable to determine an exponent. In
fact, the mean branch sizedeclineswith increasingn; and this observation suggests that either
ε = 0, or that there are no small branches in the animal which grows withn.

4. Conclusions

In this paper we examined the phase diagram of a model of self-interacting lattice animals on
the square lattice. The model we studied has both a contact and a cycle fugacity, and increases
in either of these fugacities (with the other fixed) will take the animal through aθ -point into the
collapsed phase. We set out to compare the collapse transitions induced by either the contact or
by the cycle fugacities numerically, using Monte Carlo techniques, and by estimating critical
exponents associated with the transitions. In the first place we have used a multiple Markov
chain Monte Carlo simulation with two sequences of fugacities along the axes in figure 1. We
estimated the crossover exponents associated with contact collapse and with cycle collapse
in equation (3.3), and the locations of the critical points in equation (3.4). The results for
contact collapse are consistent with earlier results obtained for collapsing lattice trees (Janse
van Rensburg and Madras 1996).

The values of the two crossover exponents,φc andφk, obtained from the multiple Markov
chain Monte Carlo sampling are different, and points towards the possibility that the contact
collapse and cycle collapse in this model may be characterized by different exponents. The
estimated value ofφc ≈ 0.63 for cycle collapse is lower than the estimate of 0.66 by Derrida
and Hermann (1983) (see also, Seno and Vanderzande 1994a, b). Our results from the umbrella
sampling simulations are more ambivalent as far as the crossover exponents are concerned.
Indeed, our best values estimated in equations (3.13) and (3.15) coincide, but since the estimated
error bars are relatively large, they are not inconsistent either with the results from the multiple
Markov chain Monte Carlo, or with the simulations of collapsing trees (Janse van Rensburg
and Madras 1996). The estimated locations of the critical points are once again consistent with
previous results. In particular, the location of the critical point for contact collapse atβ∗k ≈ 0.72
is consistent with the conjecture that the critical curve of contact-collapse transitions (theθ -line
in figure 1) is a straight line, made in an earlier study of lattice animals (Janse van Rensburg
and Madras 1997). From this point of view the critical curve in figure 1 is non-analytic at the
critical percolation point. This suggests that the percolation point is a multicritical point on the
critical curve, separating two lines of collapse transitions which are in different universality
classes. An alternative point of view is suggested by the results in figure 7. In this case we
note that the percolation perimeter exponentσ seems to be also the perimeter exponent ofθ -
andθ ′-animals. This result indicates the possibility that collapse in animals is in the critical
percolation universality class. In this case there is a single curve of critical percolation points
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in figure 1. The estimates of the metric exponents in equation (3.21) is consistent with this view
as well, and is also consistent with the results obtained for lattice trees (Janse van Rensburg
and Madras 1996). The estimate along the cycle collapse is slightly larger, but we cannot
rule out the possibility that an increase in the size of the animals, and longer simulations, will
give a result equal to the percolation value. The value of the percolation perimeter (crossover)
exponent is consistent with previous estimates (Stauffer 1979, Janse van Rensburg and Madras
1997).

Amplitude ratios of the mean square radius of gyration, and of the mean perimeter supports
the notion of universality in this problem, and inflection points in these are consistent with
the estimated critical points. The mean branch size does indicate the existence of different
regimes (if not phases) in this model. In particular, the estimates in equation (3.25) assigns
different values of this exponent along the contact-collapse line, the percolation point, and
the cycle-collapse curve. Moreover, in the collapsed regime, we also estimatedε: along the
contact axis we obtained the same value as at theθ -point for contact collapse, but along the
cycle axis it seems that this exponent is equal to zero. The different values of the exponentε

suggest that the dominant configurations at the twoθ -points are geometrically different. This
does not mean that there is a transition between these regimes, but rather a geometric crossover
from one class ofθ -transitions to the other. The fact thatε = 0 along the cycle collapse line
is also reflected in the fact that the collapsed cycle animal (albeit in a different ensemble) has
zero entropy, see Madraset al (1990) for more on this.
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