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Abstract. Lattice animals with fugacities conjugate to the number of indepedent cycles, or to the
number of nearest neighbour contacts, go through a collapse transitié+paiat at a critical value

of the fugacity. We examine the phase diagram of a model which includes both a cycle and a contact
fugacity with Monte Carlo methods. Using an underlying cut-and-paste Metropolis algorithm for
lattice animals, we implement in the first instance a multiple Markov chain simulation of collapsing
animals to estimate the location of the collapse transitions and the values of the crossover exponents
associated with these. Secondly, we use umbrella sampling to sample animals over a rectangle in
the phase diagram to examine the structure of the phase diagram of these animals.

1. Introduction

Theé-transition in models of linear and branched polymers has received considerable attention
over a period which spans several decades (Mazur and McCrackin 1968, Mazur and Mcintyre
1975, Suretal1980, Sun 1990, Pagk al1992, Tesetal 1996, Madras and Janse van Rensburg
1997). This transition is also called tlellapse transitiorand it occurs when the polymer
collapses from an expanded conformation in a good solvent to a compact conformation in a
solvent of poor quality. Between these phases, there is an intermediate regime which exists
only at the critical point (08-point). This regime is characterized by properties distinct from
those of either the expanded or collapsed phases. The collapse of the polymer is usually best
characterized by a change in its metric properties. The mean linear dimension of the branched
polymer (as a function of its total massf) is expected to scale a¥" in the expanded
phase, where is themetric exponen(in two dimensions ~ 0.64, see for example Janse
van Rensburg and Madras (1997)). In the collapsed phase this scaling betBifida d
dimensions. However, theoretical and numerical studies strongly suggest the existence of
an intermediate metric scaling regime characterized by the metric expgnentv at the
f-point in a variety of different models (see, for example, De Gennes 1975, 1978, Derrida
and Herrmann 1983, Dickman and Schieve 1984, 1986, Duplantier 1986, 1987, Saleur 1986,
Coniglio et al 1987, Duplantier and Saleur 1987, Lam 1987, 1988, Chang and Shapir 1988,
Gaunt and Flesia 1990, 1991, Flesia and Gaunt 1992, Madras and Janse van Rensburg 1997).
The phase diagram of collapsing lattice animals has also been studied. There are a number
of (different) versions of this model. This is best explained by noting that a lattice animal is
characterized by itsrder (the number of vertices), issze(the number of edges), ityclomatic
index(the number of cycles), the numberadntacts(these are pairs of vertices in the animal
which are adjacent in the lattice, but not in the animal), and the humbssleént contacts
(the number of lattice edges with one endpoint in the animal). The metric collapse of animals
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Figure 1. The phase diagram of lattice animals with
contact phase a contact and a cycle fugacity. Critical percolation is
marked with &, and is on the intersection of a linetf
expanded phase transitions and a line along which animals are weighted
as percolation clusters. The critical percolation pointis
0 a multicritical point which separates the critical line of
0-transitions into a line of tricritical collapse to a phase
rich in contacts, and into a line of tricritical collapse
trees at —oo into a phase rich in cycles.

in a particular model can be achieved by weighting the animals with respect either to the
number of contacts (this is thkemodel), or the cyclomatic index (this is themodel, Derrida
and Herrmann (1983)), or to the number of solvent contacts (this is-thedel, Flesizet al
(19924, b)). In each of these models the weighting is achieved by the introduction of a fugacity
conjugate to the number of contacts, or conjugate to the number of cycles, and the collapse
transition should occur at a critical value of the fugacity. The situation can be made even
more interesting by the introduction of more than one fugacity (Flets#1992a, b). In this
paper we will consider thek-model, where animals are counted with respect to their size and
weighted with respect to the cyclomatic index and number of contacts. This model was studied
in Janse van Rensburg and Madras (1997), where a cut-and-paste algorithm was developed
and tested by calculating critical exponents associated with this model. The phase diagram of
animals in this ensemble was also discussed, and is reproduced in figure 1. A curve of tricritical
0-points separates a phase of expanded animals (which includes the ensemble of uniformly
weighted animals) from a phase of collapsed animals. This curgepaiints contains the
critical percolation point (where animals are weighted as percolation clusters), which divides
itinto two classes of collapse. In the first class there is a lifemdints which is the result of a
collapse due to an increasing contact fugacity, and the animals collapse to a phase of ‘spanning
tree’ clusters. The second class is a curvé-pbints which is due to an increase in the cycle
fugacity, and this collapse should be to a phase rich in cycles (‘section graph’ clusters). On the
critical curve we find animals which are either critical with respect to collapse to spanning trees
(called9-animals), or critical with respect to collapse to section graphs (céalleshimals).
The possibility of a collapse—collapse transition between the collapse regime of ‘section graph’
clusters and ‘spanning tree’ clusters has been investigated in several studies. Although some
evidence which supports the notion of such a transition was found by Eleai§1992a, b),
Peard (1995), there is also no evidence for it in calculations based on the renormalization group
and in a model of directed animals (Henkel and Seno 1996).

In this paper we investigate the phase diagram of collapsing animals as illustrated in
figure 1. In particular, we consider an ensemble of animals of fixed:sirea square lattice,
and we introduce fugacities conjugate to the number of cycles, and to the number of nearest
neighbour contacts. Insection 2 we discuss the phase diagram of this model, and various scaling
hypotheses and their consequences are examined. We simulate animals in this ensemble by
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using two separate and different Monte Carlo techniques (Metropicdikl 953, Hammersley

and Handscomb 1964). In the first place we use a multiple Markov chain implementation (see
Geyer and Thompson 1994, Tesial 1996) of the algorithm discussed in Janse van Rensburg
and Madras (1997) to study separately the collapse of animals with a contact fugacity and with
a cycle fugacity. Secondly, we use umbrella sampling (Torrie and Valleau 1977, Valleau 1991,
1993a) techniques to accumulate data on a rectangle in the phase diagram which covers the
expanded and the collapsed phases, as well as the curve of tricticahts and the critical
percolation point.

2. Collapsing animals

In this section we briefly review the hypothetical phase diagram and scaling ittm@del

of interacting animals. The partition function and free energy are first examined in section 2.1,
and the phase diagram is discussed. Finite-size scaling and the scaling exponents are discussed
in section 2.2.

2.1. The phase diagram

Let a,(c, k) be the number of lattice animals afedges cycles and nearest neighbour
contacts. The partition function of this model is given by

Zu(Ber B) =) an(c, kyeheeh (2.2)
¢,k

whereg. is thecycle fugacityandp; is thecontact fugacity The limiting free energy of this
model is known to exist (Janse van Rensburg and Madras, 1997):

. 1
F(Be, Br) = n'Lmoo - log Z,,(Be, Br) (2.2)

and F(B., Bx) is convex in both its arguments and is continuous, and differentiable almost
everywhere.
In a lattice animal with: edges¢ cycles and contactss solvent contacts angvertices
it can be checked that
l=v—n+c
2dv=2n+2k +s
whered is the dimension of the lattice. We define the perimé&af the animal as the number
of nearest neighbour contacts and solvent contacts:

P=s+k. (2.4)

It is possible to weight the animals in equation (2.1) such that it becomes a model of
percolation clusters at a given probabiliisthat an edge is open. In particular, the probability
P,(p) that the cluster at the origin has sizedges is

P(p) =) an(c, up" (L — py™* (2.5)
c.k

(2.3)

with {n, v, ¢, s, k} related to each other as in equations (2.3) and (2.4). Eliminatargs in
equation (2.5) gives
Pu(p) = p"(A— )2 DN+ 1= Oay(c, A — p) 2T (2.6)
c.k
which is a weighted sum of the partition function in equation (2.1) and its derivatives, if

B: = —2dlog(1 — p) dpy = —log(1 — p). (2.7)
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Thus, if the fugacities are related foas in equation (2.7), then the model corresponds to

percolation model at a probabilify. In two dimensions the critical percolation probability is

Pe = % and we have critical percolation clusterggt, g;) = (log 16 log 2). Itis known that

P..(p) (the percolation probability) is non-analytic at= p. (Grimmett 1989), and so the

point(log 16, log 2) is also a non-analytic point & (8., Bx). The rest of the phase diagram is

expected to have the appearance proposed in figure 1. The percolation line intersects a curve

of tricritical 6-transitions, presumably at the percolation point (sifigg p) is expected to be

non-analytic only at this point). The percolation point divides the cur pints into two

critical curves of collapse transitions, each characterized by their own tricritical exponents. If

B. is fixed at a small or negative value, then presumably the collapse is into a phase poor in

cycles and rich in nearest neighbour contacts. The tricritical exponents of this transition are

expected to be those of a model of collapsing lattice trees, which is locagd=at—oo in

figure 1. We expect the collapsed animals to have the appearance of spanning trees in this

collapsed regime, and we will refer to it as tentact phaseThis transition is indicated by the

line labelled byp in figure 1. Numerical evidence suggest that this line of transitions may be a

straight line. In particular, the location of the percolation poingat= log 2, and the critical

value of the nearest neighbour fugacity in lattice trees (estimated 0 be0.699+ 0.052;

see Janse van Rensburg and Madras (1996), Madras and Janse van Rensburg (1997)) strongly

support this possibility. Similarly, if the contact fugacly is kept small or negative, then the

collapse is into a phase rich in cycles, this istlgele phaseln this case, the transition should

be related to the collapse of strongly embedded animals with a solvent or cycle fugacity (see

Derrida and Hermann 1983)t. We indicate this collapse transition in figure 1 Ioy-theve.
Another interesting issue presented by figure 1 is the following: are the lthérahsition

and the curve of’-transitions in the same universality class? Data collected in various studies

(see Janse van Rensburg and Madras (1996), and Madras and Janse van Rensburg (1997) for

details) suggest two different values of the crossover exponent along these lines. In this paper

we aim to consider the points raised above. In particular, we are interested in the locations of

the transitions, and in the values of the tricritical exponents associated with these.

2.2. Scaling

Specific heat. The finite-size free energy is defined & (8., ) = ,—1Zlog Z,(Be, Br)-
The usual finite-size scaling assumptions made for the free energy introduces the crossover
exponentsp. and¢,, where we assume that describes the crossover to critical behaviour
along the’ curve with increasing, andg, describes the crossover to critical behaviour along
the 6-line. Therefore, if we are not close to the percolation point, where effects from both
these lines may interfere to give a more complicated picture, we should expect that

fn%x)/n for contact collapsestline)

Fl’l Co ~ A H
(Be. Pr) {g(n¢‘)()/n for cycle collapsed’-line).
Here,x andx are scaling fields defined by = (8; — Bx) andx = (8 — B.). The scaling
functions f andg are assumed to approach constants if their arguments approach zero. The
specific heatsf the collapse transitions will be the most accessible quantity from a numerical
point of view: these are the second derivatives of the free energy. Taking derivatives twice
with respect tac and toy in equation (2.8) gives

CH~ 21 (i) (2.9)

Cye ~ n®1" (% x). (2.10)

(2.8)

T Note that the model in this paper is different from that in the work by Derrida and Hermann (1983) where a model
of strongly embedded lattice animals was considered.
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Thek- and x-dependence of these can be accentuated by the following manipulation of the
right-hand sides of equations (2.9) and (2.10):

C,I;k ~ n2¢k*1f”(n¢k,{) ~ Kl/¢k*2(n¢kx)2*l/¢k f//(ntbk,c) ~ K1/¢k*2f0(n¢kk) (2_11)

with fo(x) defined in the obvious way, and a similar result is found @f. The usual
assumption that the singularity in the free energy is described1sy, or by x 2%, wherea,
ando, are thespecific heaexponents along the critical lines, then implies the hyperscaling
relations:

1
2—o = — (2.12)
Ox
1
2—a. = —. (2.13)
b
Itis also possible to compute the Gaussian curvature of the free energy instead. Let
2
Crt = ———Fu(Be BY) (2.14)
Ik x
then the Gaussian curvature is the HessiaR,@B., B:):
C8 = CHcee — crecek, (2.15)
Using equations (2.9) and (2.10), we conclude that
C8 ~ n2@rd-2 (2.16)

close to the percolation point.

Metric scaling. In addition to the thermodynamic properties of animals as described above
in terms of the specific heats, we shall also be interested in the metric behaviour of animals
in the phase diagram in figure 1. L&k?), be the mean square radius of gyration. Then we
expect

n? in the expanded phase
(R, ~ n2 along thes-line (2.17)
g n? along theg’-line '
n?r at the critical percolation point.

Available data (see for example, Derrida and Herrmann 1983, Janse van Rensburg and Madras
1996, Madras and Janse van Rensburg 1997) sugges} thaty along the critical curve, and

that the value of the metric exponent at the percolation point (Stauffer 1979) is also equal to
vy. A more complete scaling assumption for the mean square radius of gyration will include

a confluent correction, which is expressed by introducing a confluent expanent

(R?), = An®(1+Bn™>). (2.18)
This scaling assumption is useful if we consider amplitude ratios involdy, . In particular,
the ratio

<R2>2n

(R?),
should approach? in the expanded phase as— oo. In the collapsed phase, a similar

analysis suggests that the amplitude ratio should appro@a¢iwihile v gets replaced by the
vg, ver andv, (whichever is appropriate) along the critical curve.

~22(1+Cn™?) (2.19)
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The mean perimeter. The mean perimeter of percolation clusters has received much attention
in the literature (see for example, Stauffer 1979). If we define the partition function
ZP(p) = D ek an(c, k)p"q*** for percolation, whergy = 1 — p and P = s + k is the
perimeter, then the expected valuepofs given by

Py = Ln+g-Liogzr(p). (2.20)
p dg

If we now assume the usual scaling for the partition function 28¢gp) ~ ﬁ(n"(pc - p)),
whereo is the crossover exponent, then

(P), ~ Ln+Bn° (2.21)
p
a relation that was tested numerically in Janse van Rensburg and Madras (1997). It is not
evident that a similar relation applies along the lin@dgfansition, and that the exponenis
an exponent of tricritica-animals. We will present some data thatan be seen away from
the critical percolation point at thepoints of collapse (see figure 7).

The mean branch size. We define the mean branch size of animals as follows (see Janse van
Rensburg and Madras 1992, and Madras and Janse van Rensburg 192Melzetut-edge

of an animalA. ThenA — e is disconnected, and the smaller of its two components is called
abranch let the size of the branch big. The expected value @, is defined by taking the
uniform average over all possible cut-edges in all animals. Let the experdagcribe the
scaling of(b,):

{bn) ~ n* (2.22)

wheree < 1. In the implementation of a cut-and-paste algorithm for animals it is more
convenient to compute a related quantity. The algorithm selects an edge uniformly over all
edges in the animal. If a cut-edge is not chosen, then we define the branch to have size zero.
If a cut-edge is selected with probabilipy,, then the observed size of a branch will be

<Bn> ~ pn(bn> + (1 - pn)~0 ~ p11n6~ (223)

We do not expecp, to approach zero with increasingn either the expanded phase or along

the critical curve. In the collapsed phase the situation is less clear, but in a spanning tree
regime we also expegt, not to approach zero with increasing However, in the section
graph regime, which results from collapse along éheurve, we would presumably have
compact animals rich in cycles, ampg may approach zero.

3. Numerical results

We simulated lattice animals using the cut-and-paste algorithm for animals (Janse van Rensburg
and Madras 1997). This algorithm was implemented with two techniques. In the first place, we
used multiple Markov chain sampling to simulate animals (in the square lattice) along the axes
of the phase diagram in figure 1. Secondly, we implemented the algorithm with an umbrella
distribution over a rectangle [@ log 2] x [0, 6 log 2] in the phase diagram which includes the
critical curve in the first quadrant of figure 1.

3.1. Multiple Markov chain sampling

In this simulation we sampled along a set of parallel Markov chains in the state space of
animals using a multiple Markov chain algorithm as explained in &esil (1996). In the
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Figure 2. The specific heat as a function of the cycle fugacity, estimated using a
multiple Markov chain Monte Carlo simulation. The data /at = 50 are indicated

by squares, and the peaks systematically increase in height witincreasing in
{50, 100, 200, 400, 800, 120Q 160Q 240Q 3200.

first set of simulations, 20 parallel chains were placed alongthe 0 axis betweers, = 0
and g, = 2log 2 to simulate animals undergoing a contact collapse at a critical value of the
contact fugacitys;. In the second set of simulations, we placed 20 chains along,the 0
axis betweerB. = 0 andB. = 6log 2 to simulate animals undergoing a cycle collapse at the
critical value g of the cycle fugacity. Our prime motive is the calculation of the crossover
exponentsp. and ¢, associated with the collapse transitions, as well as the location of the
critical valuesg; andg;. In addition, we hope to obtain estimates of the metric expongnts
andvy at the critical points. Animals of sizes ranging fram= 50 ton = 3200 were sampled.
The data for animals along the cycle axis are in figure 2.

The height and position of the peaks in the specific heat were estimated by interpolating
the data collected from each chain. From equations (2.9) and (2.10) we conclude that the
height in the peaks increases witlas

Hi(n) ~ n?#1 H,(n) ~ n?1 (3.1)
while the position of the peak should move witlas

Bi(n) ~ B +Om™)  Bo(n) ~ B +0Om™%). (3-2)
We analysed our data using a least squares analysist. Our results are

¢r = 0.6027+ 0.00444+ 0.0071

3.3
¢. = 0.62740.01104 0.001Q 53

The position of the collapse transition is extrapolated by using the valugs afid ¢, in
equation (3.3), together with equation (3.2) to estimatands... The fits were repeated with

t Afitis deemed acceptable if the-statistic is acceptable at the 95% level. If a fit is not acceptable, then data at the
smallest value of (where corrections to scaling contribute the most) are discarded. We also estimate a systematic
error by keeping track of our best estimate in a successful fit by discarding one more data point at the lowest value
of n. The absolute difference in the results is taken as the systematic error. The statistical error will always be stated
before the systematic error.
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¢r andg,. taking values at the ends of their respective confidence intervals to estimate the effect
of the uncertainty in these exponents on the location of the transition. Our best estimates are

B = 0.719+ 0.076
B* =361+0.11

where the estimated systematic errors are much smaller than the stated 95% statistical
confidence intervals. The estimated valuegpicompares well to the estimater@7+ 0.015
obtained by exact enumeration (Peard 1995).

The mean square radius of gyration of the animals was also examined. The multiple
Markov chain simulations each had a chain at zero fugacity, and those data can be used to
obtain a high quality estimate of the metric exponent. If all the data are pooled, then a least
squares analysis gives

v = 0.644 194 0.000 64+ 0.000 31 (3.5)

This result compares well with the estimates dbr lattice trees and animals in the literature;

itis more precise than the previous best Monte Carlo estimate (Janse van Rensburg and Madras
1992), and compares well with results obtained by other methods (Derrida and de Seze (1982)
foundv = 0.6408+ 0.0003 while Kerész (1986) estimated = 0.6406+ 0.0002). We do

not think that the difference of these estimates with our estimate is significant; there may still
be other biases present in our data, or in those studies, which could account for the difference.
The metric exponent at the contact collapse transition can be estimated by recording data at the
peak in the specific heats. At the peak corresponding to the contact collapse, our best estimate
is

(3.4)

vy = 0.5191+ 0.0071 (3.6)

On the other hand, we could not find a satisfactory two parameter fit to our data at the cycle
collapse transition. Our ‘best’ estimate suggests that: 0.52, which is consistent with the
result obtained in equation (3.6). At the percolation point= 0.532+ 0.005 (Janse van
Rensburg and Madras 1997), an estimate which is close to the estimate in equation (3.6). It
seems that the available evidence does not rule out the possibility Biegumes the same
value all along the critical curve and at the percolation point in figure 1. If this is the case,
then the critical percolation cluster and-animal, or &’-animal, will have the same metric
properties.

3.2. Umbrella sampling

The multiple Markov chain Monte Carlo implementation above collects data at a set of discrete
values of the fugacities. There are several advantages in this approach, most notably the
shortened autocorrelation times along the Markov chain, and the simultaneous collection of
data at a number of different values of the fugacities. However, it would also be valuable to
collect data over a region of parameter space; say over a rectangle which covers an area of
interest in figure 1. This can be done using a variant of importance sampling called umbrella
sampling (Torrie and Valleau 1977, Valleau 1991, 1993a). That this approach is appropriate in
the model in this paper is suggested by the results obtained for collapsing lattice trees (Janse
van Rensburg and Madras 1996, Madras and Janse van Rensburg 1997). The main difference
in this work, compared to previous implementations, is that we aim to use umbrella sampling
over a rectangle (involving two fugacities) rather than just along a line (which involves only
one fugacity).

The implementation of the umbrella sampling scheme for animals proceeded as follows.
Define A, to be the set of all animals with edges, and lek be such an animal. Let(«)
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be the number of cycles arda) be the number of contacts in the animalThe Boltzmann
distribution P, over the animals i, is given by
c(o)+Brk(a
P”(Ol) = eﬂ i (37)

Zy(Bes Br)
whereZ, (8., Bx) isanormalizing function, and in this case is also the partition function defined
in equation (2.1). In the usual implementation of the cut-and-paste Metropolis algorithm for
animals, one samples along a Markov chaid jrwith limiting equilibrium distribution given
by the Boltzmann distribution in equation (3.7). In this implementation, the animal
weighted by the factore@*#*@ |n the umbrella simulations we supposed that the animals
are each assigned a weighfe) = n(c(a), k(e)), and letZ,(x) = ), n(a). Then the
Metropolis algorithm will have equilibrium probability distribution(«)/Z,, (r) over the set
A,. Canonical averages can be computed using importance sampling techniqugsd_at
function onA,,, and define the following estimator over a chain of length

X;
Su(f) = Zj; LD, (3.8)
The ratio estimator
S (f)
Rn() = 55 (3.9)

is a biased estimate off)s, 5. An additional and important advantage is the ability
to estimate relative free energies. The ratio estimaiptl; 82, 82) /S (L L, BP)
converges toZ, (82, 82)/z, (B>, BY). By taking logarithms and dividing by, we see
that 210g(S, (1; B2, B)/Su(L: B, BN — Fu(B2, BZ) — Fu(BY, B).

Obtalnlng an umbrella for a particular implementation can be a problem. The following
method generally works, if it is used with patience. Assume that the umbrella distribution is
a combination of Boltzmann distributions

() =n(c, k) = Z w,-,jeﬂé‘)c(“))'ﬁg)k(“) (3.10)
LJ
where the fugacitieg andﬂ,ﬁj) form a grid over the rectangle of interest, and the Boltzmann
factors are weighted by; ; at each grid-point. Notice the implicit assumption thal) is
only a function of the number of cycles and contacts. This is very convenient: we only need
to construct a table of values afc, k) in the implementation of the algorithm.

Since we wish to have an umbrella which will allow us to compute canonical averages
at any of the grid points (say aB(, 8’")), the contribution of that Boltzmann factor
corresponding to this grid point should make a substantial contribution to (3.10). This is
true for each andj, which leads us to the following recipadjust the weights); ; such that
each term in equation (3.10) makes a comparable contribution(ég. This means that

(i, € @B 7 (e (), k(@) r A (i € COEED (), k(@) (3.12)
In other words, we can solve for the ratios of the weights:
Wiy o g(EBO B ~F BB (3.12)
Wk, 1

where we used, (8., Bx) = [log Z,(B., Bu)]/n. Thus, if we know the free energies, then
we can find a good umbrella. Unfortunately, this is a circular argument; in order to find good
estimates of the free energies, we need a good umbrella in the first place. All is not lost,
however, as we boot-strapped our simulations by starting at a small vaiyed estimated
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Figure 3. The estimated specific heats and free energy, obtained from the umbrella Monte Carlo
simulation. Clockwise from the top left-hand corner we hé;’{é, CC, F(Br, Be) andcC§.

the free energies over a 160100 grid covering the rectangle,[Rlog 2] x [0, 6log 2]. The
results were then used to estimate weights at a larger value df the resulting weights

did not give a good umbrella, then we repeated the run with new weights estimated from the
results of the previous run. This technique consistently gave a good umbrella after a few
iterations, at the expense of considerable computer time! Finally, the resulting time series
from a run with a good umbrella were analysed over & 7@ grid which covers the rectangle

[0, 2log 2]x [0, 61log 2]. Animals of sizex were sampled in these runs once eveitgrations,

and for animals of size up to 400 edges we samplédities (the total run had length %0
iterations). For animals of size 500 we sampled da2a<11(P times, and for animals of sizes

600 and 800 we sampled data 20° times. The total CPU time used ran into weeks for larger
values ofn.

3.2.1. Specific heats.We computed”** andC< as in equations (2.9) and (2.10) by collecting
data on the number of cycles and contacts in the animals. In addition, the Gaussian curvature
of the free energy (equation (2.15)) was also computed. In figure 3 we illustrate these specific
heats for animal of size = 300 over the sampling area.

We estimated the height and the location of the peak in the specifictjeationg the
contact axis to estimate the exponentin equations (2.9) and (3.1). Linear least squares
analysis, using the same criteria as in section 3.1, gave the estimate

¢ = 0.622+ 0.009+ 0.022 (3.13)

of the crossover exponent associated with contact collapse in animals. The critical value of the
contact fugacity can also be estimated, assuming that equation (3.2) applies here. We obtained

B; =0.711+0.11+0.08 (3.14)

We similarly analysed the data computed from the specific @¢atlong the cycle axis to
estimate the crossover exponent associated with cycle collapse, and the critical value of the
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cycle fugacity at this collapse. We obtained

¢. = 0.6224 0.006+ 0.026 (3.15)
B = 3.52+0.032+ 0.010 (3.16)

These results are consistent with the values obtained from the (independent) multiple Markov
chain Monte Carlo method, and stated in equations (3.3) and (3.4).

The height of the peak in the Gaussian curvature of the free energy was argued to increase
with n as in equation (2.16). From equation (2.15), and by using (2.9) and (2.10), it seems that
a reasonable scaling assumption for the peakiis

C8(Be, Br) ~ n2 P02 (%1, n% ) (3.17)

whereh is a universal scaling function. In other words, the location of the peak should scale
with n as

Be(n) = B+ O(n~%)

Bi(n) = B +O(n~™).
In addition, we expect the limiting position of the peak to coincide with the percolation point
in figure 1. A least squares analysis gives

B = 0.60+0.30
B = 3544 0.30.

The large error bars are rounded (up) statistical uncertainties. These results can be used to
compute the critical percolation probability as an additional check. F$pm- 0.60 and
equation (2.7) we obtaip, ~ 0.45 and from3. = 3.54 we obtairnp, ~ 0.587, both estimates

with large error bars. A more successful approach is found if we plot the peaks in the Gaussian
curvature againgt. This givesp, = 0.491+ 0.008, which is consistent with the known value

of p.. The exponent @, + ¢,) — 2 in equation (3.17) can also be determined by analysing

the height of the Gaussian curvature of the free energy. We obtained

2(¢. + ) —2=0.40194+ 0.17+ 0.01 (3.20)
This result is consistent with the estimatesppfand¢,. in equations (3.13) and (3.15).

(3.18)

(3.19)

3.2.2. The mean square radius of gyrationMe collected data on the mean square radius of
gyration for uniformly weighted animals (these are at the origin in figure 1), and for animals
weighted ag-animals (at the point0, 8;) on the contact axis), and weighted&sanimals

(at the point(8¥, 0) on the cycle axis) and as critical percolation clusters. We estimated the
metric exponent at each of these points:

v = 0.64764+ 0.0037+ 0.0006

vy = 0.5364+ 0.0033+ 0.0021
vy = 0.5546+ 0.0039+ 0.0009
v, = 0.5335+ 0.0031+ 0.0036

The estimate of for expanded animals is consistent with other estimates in the literature
(Janse van Rensburg and Madras 1997). The value estimateg falso consistent with

the accepted value for critical percolation, which is approximatehd.0 The estimate for
f-animals is consistent with this value, but we note that our result fanimals excludes both

the values of the metric exponent for critical percolation cluster®aamimals with the stated

error bars. Most available data (see for example, Derrida and Hermann 1983, Madras and Janse
van Rensburg 1997, Janse van Rensburg and Madras 1997) suggesatit#t -animals have

(3.21)
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a metric exponent close in value to critical percolation clusters, and our data does not suggest
otherwise (it is still possible that there is an unknown systematic error in the estimates above,
which we cannot detect by our analysis; for more on this possibility, see You and Janse van
Rensburg (1998)).

Amplitude ratios of the mean square radius of gyration were also computed along the
contact, and cycle fugacity axes in figure 1. We illustrate those in figures 4 and 5. The
inflection points in the amplitude ratios may be taken as estimates of the collapse transitions.
If we extrapolate the inflections in figure 4, then we obtain the estijate 0.71, which is
consistent with the estimates obtained from the specific heat data above in equation (3.14).
Similarly, we can extrapolate the inflections in figure 5 to obtain the estififete 3.52, which
is also consistent with the result we obtained by considering the specific heat data. Finally,
the amplitude ratios can also be plotted agapnatong the percolation line in figure 1. The
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resulting curves are plotted in figure 6. The metric collapse in these ratios should coincide
with percolation in the clusters, and the inflection points in each curve should be estimating
the critical value ofp. An average over the inflection points gived®+ 0.02.

3.2.3. The mean perimeterData on the mean perimeter were also collected for expanded
animals at the origin in figure 1, as well as at the critical points on the contact axis, the cycle
axis, and at the critical percolation point. For expanded animals, the perimeter should grow as
n, and by assuming thaP,) = An®, a least squares analysis of our data gives

w = 0.9922+ 0.0017+ 0.0013 (3.22)

At the percolation point, the behaviour 6P,) should be given by equation (2.21). Since
De = % we can estimate the percolation crossover expon@m{2.21). A linear least squares
analysis gives

o = 0.3861+ 0.0042+£ 0.0023 (3.23)

It is more difficult to estimate the dependence of the mean perimeteradrthed- ando’-
transitions along the axes infigure 1. Equation (2.21) suggestdihat- An+Bn?; ifitistrue
that the exponernt exists away from the critical percolation point. We tested this asssumption
in figure 7 by plotting(P,)/n against:® . The resulting plots are linear, and confirms the
notion thato describes the surface contribution to the perimeter for critical animals along the
critical curve in figure 1.

The perimeter of an animal should change as it goes through a collapse transition to a
compact animal. The plots in figure 7 suggests that

“Z”) ~ Y (Be. i) + Bn” (3.24)

whereyr is an amplitude. We investigated the functignalong the contact and cycle axis
by plotting (P,)/n againstg, and againsp. in figures 8 and 9. The inflection point i
should again be an estimate of the critical points: we foundghat 0.73 andg; ~ 3.45 by
extrapolating the inflection points in figures 8 and 9. These results are not inconsistent with
our previous results.
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Figure 8. P,/n againstg; along the contact axis. We expect this to approach a limiting curve.
The value ofz increases systematically from top to bottom.

The ratioP,/n can also be computed along the percolation line and plotted as a function
of the percolation probability. The inflection points in these curves should converge to the
critical value ofp with increasing:. Our results are shown in figure 10, and the average of the
inflection points estimates that = 0.514+ 0.018, in close agreement with the known value

1

of pc = 3.

3.2.4. The mean branch sizeData were similarly collected for the mean branch size for
expanded animals, and férandd’-animals and for critical percolation clusters. The exponent
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Figure 10. P, /n againstp along the percolation line. We expect this to approach a limiting curve.
The value ofz increases systematically from top to bottom.

€ was estimated in each case as
¢ = 0.7447+ 0.0100+ 0.0013
€ = 0.6665=+ 0.0110+ 0.0056
€ = 0.031+0.042+0.017
€, = 0.427+0.018+ 0.013
In this case we obtained different values for each regime. The estimate for expanded animals
coincide with the estimate in Janse van Rensburg and Madras (1997), as does the estimate
at the critical percolation point. The value estimateddeanimals are different, suggesting

larger branches (on average) in the animals. The exponent has a very small estimated value for
#’-animals. These animals have a lot of cycles, and the result suggests that deleting a cut-edge

(3.25)
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in such an animal is likely to give a small branch. The opposite is true for percolation clusters,
where a larger value af, is found: if a cut-edge is deleted, then we can expect, with some
probability, a large branch (in other words, most cycles are small).

We have also made an attempt to estimate the expenarthe collapsed phase. At the
pointg;, = 1, B. = O (this is on the contact axis, well into the collapsed phase), a least squares
analysis gives

¢ = 0.659+ 0,011+ 0.010, (3.26)

The fit was good withy? ~ 2 on eight degrees of freedoma};, = 50. Remarkably, the
value ofe obtained here is within the error barsfin equation (3.25). Thus, it seems that
there is no further change in the branching characteristics of the lattice trees if we move beyond
thed-line into the collapsed phase. On the other hand, if we consider the data on the cycle axis
in the collapsed phase gt = 0, 8. = 4, then we are unable to determine an exponent. In
fact, the mean branch sigleclineswith increasing:; and this observation suggests that either

€ = 0, or that there are no small branches in the animal which growsawith

4. Conclusions

In this paper we examined the phase diagram of a model of self-interacting lattice animals on
the square lattice. The model we studied has both a contact and a cycle fugacity, and increases
in either of these fugacities (with the other fixed) will take the animal throwgpaint into the
collapsed phase. We set out to compare the collapse transitions induced by either the contact or
by the cycle fugacities numerically, using Monte Carlo techniques, and by estimating critical
exponents associated with the transitions. In the first place we have used a multiple Markov
chain Monte Carlo simulation with two sequences of fugacities along the axes in figure 1. We
estimated the crossover exponents associated with contact collapse and with cycle collapse
in equation (3.3), and the locations of the critical points in equation (3.4). The results for
contact collapse are consistent with earlier results obtained for collapsing lattice trees (Janse
van Rensburg and Madras 1996).

The values of the two crossover exponeptsandg,, obtained from the multiple Markov
chain Monte Carlo sampling are different, and points towards the possibility that the contact
collapse and cycle collapse in this model may be characterized by different exponents. The
estimated value ap. =~ 0.63 for cycle collapse is lower than the estimate @by Derrida
and Hermann (1983) (see also, Seno and Vanderzande 1994a, b). Our results from the umbrella
sampling simulations are more ambivalent as far as the crossover exponents are concerned.
Indeed, our best values estimated in equations (3.13) and (3.15) coincide, but since the estimated
error bars are relatively large, they are not inconsistent either with the results from the multiple
Markov chain Monte Carlo, or with the simulations of collapsing trees (Janse van Rensburg
and Madras 1996). The estimated locations of the critical points are once again consistent with
previous results. In particular, the location of the critical point for contact collagiesat0.72
is consistent with the conjecture that the critical curve of contact-collapse transitiofidiftiee
in figure 1) is a straight line, made in an earlier study of lattice animals (Janse van Rensburg
and Madras 1997). From this point of view the critical curve in figure 1 is non-analytic at the
critical percolation point. This suggests that the percolation point is a multicritical point on the
critical curve, separating two lines of collapse transitions which are in different universality
classes. An alternative point of view is suggested by the results in figure 7. In this case we
note that the percolation perimeter exponers#eems to be also the perimeter exponert-of
andé’-animals. This result indicates the possibility that collapse in animals is in the critical
percolation universality class. In this case there is a single curve of critical percolation points
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infigure 1. The estimates of the metric exponents in equation (3.21) is consistent with this view
as well, and is also consistent with the results obtained for lattice trees (Janse van Rensburg
and Madras 1996). The estimate along the cycle collapse is slightly larger, but we cannot
rule out the possibility that an increase in the size of the animals, and longer simulations, will
give a result equal to the percolation value. The value of the percolation perimeter (crossover)
exponent is consistent with previous estimates (Stauffer 1979, Janse van Rensburg and Madras
1997).

Amplitude ratios of the mean square radius of gyration, and of the mean perimeter supports
the notion of universality in this problem, and inflection points in these are consistent with
the estimated critical points. The mean branch size does indicate the existence of different
regimes (if not phases) in this model. In particular, the estimates in equation (3.25) assigns
different values of this exponent along the contact-collapse line, the percolation point, and
the cycle-collapse curve. Moreover, in the collapsed regime, we also estimaaéuhg the
contact axis we obtained the same value as aftpeint for contact collapse, but along the
cycle axis it seems that this exponent is equal to zero. The different values of the exponent
suggest that the dominant configurations at thedwmints are geometrically different. This
does not mean that there is a transition between these regimes, but rather a geometric crossover
from one class of-transitions to the other. The fact that= 0 along the cycle collapse line
is also reflected in the fact that the collapsed cycle animal (albeit in a different ensemble) has
zero entropy, see Madras al (1990) for more on this.
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